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What is (Evolutionary) PDE? 
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• Heat Equation 

Governing Eqn. 

Initial Condition 

Boundary Condition 

A.K. Jain. Partial differential equations and finite-difference methods in image processing,  part 1. 
Journal of Optimization Theory and Applications, 23:65–91, 1977. 



How to Use PDE for Image Proc.? 
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• Heat Equation 

Input Image 

A.K. Jain. Partial differential equations and finite-difference methods in image processing,  part 1. 
Journal of Optimization Theory and Applications, 23:65–91, 1977. 

• Discretization 
Explicit Scheme 

Implicit Scheme 
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Connection to Neural Networks 

t 



A Brief History of PDE Methods 
• Scale Space 

 I¾ = I0 ¤G(¾2;x):
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• Heat Equation 

A. Witkin. Scale-space filtering. In Proc. Int. Joint Conf. Artificial Intelligence, 1983. 
J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984. 
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A Brief History of PDE Methods 
• Anisotropic PDEs 
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or exp(¡(x=K)2):

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE TPAMI, 
12(7):629–639, 1990. 
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A Brief History of PDE Methods 

• Shock Filters 
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S.J. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM J. 
Numerical Analysis, 27(4):919–940, 1990. 



A Brief History of PDE Methods 

• Active Contours 

min
C

Z 1

0

g(krI(C(p))k2kC0(p)kdp:

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002. 

Variational 
Calculus  

Euler-Lagrange 
Equation 

Gradient 
Descent 

Evolutionary 
PDEs 



Summary 

• Two kinds of approaches 
– Direct design: write down PDEs directly 

– Variational design: energy functional → Euler-Lagrange 
equation 

• Existing applications of PDEs 
– Denoising 

– Enhancement 

– Segmentation 

– Stereo 

– Inpainting 

– … 

• It was as hot as artificial neural network in 1990s! 

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002. 



But… 
• Designing PDEs is too difficult! 

– High math skills 

– Good insights into the problem 

Possible! 

PDEs + Learning = Learning Based PDEs 

• Can we have a convenient way? 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Basic Idea 

• Observe the invariant properties of vision problems 

• Determine differential invariants 

• Determine combination coefficients among invariants 
– By PDE-constrained optimal control 

• A user only have to prepare 
input/output training data! 

• The SAME framework for various problems 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



General PDEs 



Our PDEs 

ρ: indicator function, for collecting large scale information. 

a= faig and b= fbig are control functions.

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Two Basic Invariances 

• Shift Invariance 

• Rotation Invariance 

Theorem 1: Coe±cients fajg and fbjg must be independent of x.

Theorem 2: LO and L½ must be functions of fundamental di®erential

invariants that are invariant under shift and rotation.

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993. 

Fundamental differential invariants can be viewed as “bases” of PDEs. 



Shift/Rotation Invariant Fundamental 
Differential Invariants 

Table 1: Shift and rotationally invariant fundamental di®erential invariants up

to second order.
i invi(½;O)

0,1,2 1, ½, O

3,4,5 jjr½jj2 = ½2x +½2y, (r½)trO = ½xOx +½yOy, jjrOjj2 = O2
x +O2

y

6,7 tr(H½) = ½xx +½yy, tr(HO) = Oxx +Oyy

8 (r½)tH½r½= ½2x½
2
xx + 2½x½y½

2
xy +½2y½

2
yy

9 (r½)tHOr½= ½2xO
2
xx + 2½x½yO

2
xy + ½2yO

2
yy

10 (r½)tH½rO = ½xOx½xx + (½yOx + ½xOy)½xy +½yOy½yy
11 (r½)tHOrO = ½xOxOxx + (½yOx +½xOy)Oxy +½yOyOyy

12 (rO)tH½rO = O2
x½xx + 2OxOy½xy +O2

y½yy
13 (rO)tHOrO = O2

xOxx + 2OxOyOxy +O2
yOyy

14 tr(H2
½) = ½2xx + 2½2xy +½2yy

15 tr(H½HO) = ½xxOxx + 2½xyOxy +½yyOyy

16 tr(H2
O) = O2

xx + 2O2
xy +O2

yy

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993. 



Simplest PDEs 

LO(a; hOi; h½i) =
16P
j=0

aj(t)invj(½;O);

L½(b; h½i; hOi) =
16P
j=0

bj(t)invj(O;½):

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Learning Coefficients by Optimal Control 

(Im; ~Om) are training samples, where Im is the input image and ~Om is the

expected output image, m = 1; 2;¢¢¢;M.

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Solving Optimal Control Governed by 
PDEs 

aj Ã aj ¡ d
DJ

Daj
;

bj Ã bj ¡ d
DJ

Dbj
;

j = 1;¢¢¢;M:

• Gradient descent 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 

Gateaux derivative 

Adjoint function 



Adjoint Equations 

Propagates 
backwards! 

≈ BP in NN 



Layer-wise Optimization 
• Minimize the difference from the ground truth at every 

time step. 

Zhao et al., A Fast Alternating Time-Splitting Approach for Learning Partial Differential Equations, Neurocomputing 
2016. 



So Complex … 

• The above is our effort to set up the framework 

• A user only have to prepare input/output training pair 

• Once coefficients are computed, PDEs are obtained 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Experiments 

• The same form of PDEs for different problems! 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Image Blur 

RMSE=0.46, PSNR=54.88dB 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Image Blur 

Standard heat equation: a7 = const > 0, ai ´ 0, i 6= 7, and bj ´ 0, j =

0;¢¢¢; 16.
Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Perceptual Edge Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Image Denoising – Gaussian Noise 

G. Gilboa, N. Sochen, and Y.Y. Zeevi. Image enhancement and denoising by complex diffusion 
processes. IEEE TPAMI, 26(8):1020–1036, 2004. 

OUR: 27.87±2.07dB;    Other PDE: 26.91±2.68dB 



Image Denoising – Real Noise 

Noiseless           Noisy               ROF                 TV-l1             LPDE 



Plane Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Plane Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Plane Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Butterfly Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Butterfly Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Butterfly Detection 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Handling Color Images 

• Correlation among colors is tricky! 

• Multi-channels + one indicator function 

• 69 fundamental differential invariants 

Liu, Lin, Zhang, Tang, and  Su, Toward Designing Intelligent PDEs for Computer Vision: A Data-Based 
Optimal Control Approach, Image and Vision Computing, 2013. 



Experiments - Color2Gray 



Experiments - Demosaicking 



Experiments – Text Detection 

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 



Experiments – Text Detection 

Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 



Experiments – Text Detection 
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Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 

Experiments – Text Detection 

ICDAR 



Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 

Experiments – Text Detection 

SVT 



Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 

Experiments – Text Detection 
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Experiments – Text Detection 



Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 

Experiments – Text Detection 



Zhenyu Zhao, Cong Fang, Zhouchen Lin, and Yi Wu, A Robust Hybrid Method for Text Detection 
in Natural Scenes by Learning-based Partial Differential Equations, Neurocomputing, 2015. 

Experiments – Text Detection 



Grand Picture 

• What are the PDEs that govern visual processing? 

There should be! 



Grand Picture 

• How to find the PDEs? 

Symmetries or Invariances 

• Newton Laws: Galilean Transformation 

• Maxwell Equations: Lorentzian Transformation 

• Special Relativity: FitzGerald–Lorentz–Einstein 
Transformation 

• General Relativity: Gauge Invariance 

• String Theory: Super-Symmetry 

• Higgs Particle: Local Gauge Invariance of Young-Mills 
Equation 



Grand Picture 

• Learning based PDEs only requires that its output is 
close to that of real visual system when the input is a 
meaningful image. 

For example, although

O1(x; t) = kxk2 sin t and O2(x; t) = (kxk2 + (1¡ t)kxk)(sin t+ t(1¡ t)kxk3)

are very di®erent functions, they initiate from the same function at t = 0 and

also settle down at the same function at time t = 1. So both functions t̄ our

needs and we need not care whether the system obeys either function.

t 



Conclusions and Future Work 

• LPDEs is a promising framework to solve different 
computer vision and image processing problems in a 
unified way. 

• More invariants and more complex combinations are yet 
to be explored. 

• Biological explanation of the LPDEs is also interesting. 

• Connections to deep learning? 

t 



Thanks! 

• zlin@pku.edu.cn 

• http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm 
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