Learning Based Partial Differential Equations for Visual Processing

Zhouchen Lin (林宙辰) Dept. of Machine Intelligence, School of EECS Peking University Aug. 29, 2016

Outline

- Background and Motivation
- Learning Based PDE
- Applications
- Conclusions

What is (Evolutionary) PDE?

• Heat Equation

$$\begin{cases} \frac{\partial I}{\partial t} = \Delta I, & Governing Eqn. \\ I|_{t=0} = I_0, & Initial Condition \\ \frac{\partial I}{\partial n}|_{\partial D} = 0. & Boundary Condition \end{cases}$$

A.K. Jain. Partial differential equations and finite-difference methods in image processing, part 1. *Journal of Optimization Theory and Applications*, 23:65–91, 1977.

How to Use PDE for Image Proc.?

• Heat Equation

$$\begin{pmatrix} \frac{\partial I}{\partial t} &= & \Delta I, \\ I|_{t=0} &= & I_0, \\ \frac{\partial I}{\partial n}|_{\partial D} &= & 0. \end{pmatrix} \quad \text{Input Image}$$

Discretization

$$\frac{\partial I}{\partial t} \approx \frac{I(x, y, t + \Delta t) - I(x, y, t)}{\Delta t}$$
Explicit Scheme
$$\frac{\partial I}{\partial t} \approx \frac{I(x, y, t) - I(x, y, t - \Delta t)}{\Delta t}$$
Implicit Scheme
$$\frac{\partial I(x, y, t)}{\partial x} \approx \frac{I(x + \Delta x, y, t) - I(x, y, t)}{\Delta x}$$

$$\frac{\partial^2 I(x, y, t)}{\partial x^2} \approx \frac{I(x + \Delta x, y, t) - 2I(x, y, t) + I(x - \Delta x, y, t)}{(\Delta x)^2}$$

A.K. Jain. Partial differential equations and finite-difference methods in image processing, part 1. *Journal of Optimization Theory and Applications*, 23:65–91, 1977.

How to Use PDE for Image Proc.?

• Heat Equation

$$\begin{pmatrix}
\frac{\partial I}{\partial t} &= & \Delta I, \\
I|_{t=0} &= & I_0, \\
\frac{\partial I}{\partial n}|_{\partial D} &= & 0.
\end{pmatrix}$$
Input Image

• Discretization

A.K. Jain. Partial differential equations and finite-difference methods in image processing, part 1. *Journal of Optimization Theory and Applications*, 23:65–91, 1977.

Connection to Neural Networks

• Scale Space

t=0

$$I_{\sigma} = I_0 * G(\sigma^2, \mathbf{x}).$$

Heat Equation

$$\begin{cases} \frac{\partial I}{\partial t} &= \Delta I, \\ I|_{t=0} &= I_0, \\ \frac{\partial I}{\partial n}|_{\partial D} &= 0. \end{cases}$$

$$t = \frac{1}{2}\sigma^2$$

 $t=t_n$

 $t=t_2$

A. Witkin. Scale-space filtering. In *Proc. Int. Joint Conf. Artificial Intelligence*, 1983. J. Koenderink. The structure of images. *Biological Cybernetics*, 50:363–370, 1984.

 $t=t_1$

• Anisotropic PDEs

$$\begin{cases} \frac{\partial I}{\partial t} &= \nabla \cdot (c(\|\nabla I\|) \nabla I), \\ I|_{t=0} &= I_0, \\ \frac{\partial I}{\partial n}|_{\partial D} &= 0. \end{cases} \quad c(x) = \frac{1}{1 + (x/K)^2} \text{ or } \exp(-(x/K)^2). \end{cases}$$

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. *IEEE TPAMI*, 12(7):629–639, 1990.

Shock Filters

$$\begin{cases} \frac{\partial I}{\partial t} &= - \|\nabla I\| F(\Theta(I)), \\ I|_{t=0} &= I_0, \\ \frac{\partial I}{\partial n}|_{\partial D} &= 0. \end{cases}$$

Original

Perona, Malik

Rudin, Osher,

S.J. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. *SIAM J. Numerical Analysis*, 27(4):919–940, 1990.

Active Contours

$$\min_{C} \int_{0}^{1} g(\|\nabla I(C(p))\|^{2} \|C'(p)\| \,\mathrm{d}p.$$

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002.

Summary

- Two kinds of approaches
 - Direct design: write down PDEs directly
 - Variational design: energy functional → Euler-Lagrange equation
- Existing applications of PDEs
 - Denoising
 - Enhancement
 - Segmentation
 - Stereo
 - Inpainting

• It was as hot as artificial neural network in 1990s!

G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing. Springer-Verlag, 2002.

But...

- Designing PDEs is too difficult!
 - High math skills
 - Good insights into the problem

• Can we have a convenient way?

Possible!

PDEs + Learning = Learning Based PDEs

Basic Idea

- Observe the invariant properties of vision problems
- Determine differential invariants
- Determine combination coefficients among invariants
 - By PDE-constrained optimal control
- A user only have to prepare input/output training data!
- The **SAME** framework for various problems

General PDEs

$$\begin{cases} f_t = L(\langle u \rangle, \langle f \rangle), & (\mathbf{x}, t) \in Q, \\ f = 0, & (\mathbf{x}, t) \in \Gamma, \\ f|_{t=0} = f_0, & \mathbf{x} \in \Omega. \end{cases}$$

X	(x, y), spatial variable	t	temporal variable		
Ω	an open region of \mathbb{R}^2	$\partial \Omega$	boundary of Ω		
Q	$\Omega \times (0,T)$	Γ	$\partial \Omega imes (0,T)$		
abla f	gradient of f	$ $ \mathbf{H}_{f}	Hessian of f		
\wp	$\{\emptyset, x, y, xx, xy, yy, \cdots\}$	$ p , p \in \wp \cup \{t\}$	the length of string p		
$\frac{\partial^{ p }f}{\partial p}, p \in \wp \cup \{t\}$	$f, \frac{\partial f}{\partial t}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial x \partial y}, \cdots, \text{ when } p = \emptyset, t, x, y, xx, xy, \cdots$				
$f_p, p \in \wp \cup \{t\}$	$rac{\partial^{ p }f}{\partial p}$	$\langle f angle$	$\{f_p p \in \wp\}$		
$L_{\langle f angle}(\langle f angle, \cdots)$	the differential operator	$\sum_{p \in \wp} \frac{\partial L}{\partial f_p} \frac{\partial^{ p }}{\partial p} \text{ assoc}$	eiated to function $L(\langle f \rangle, \cdots)$		

Our PDEs

$$\begin{cases}
O_t = L_O(\mathbf{a}, \langle O \rangle, \langle \rho \rangle), & (\mathbf{x}, t) \in Q, \\
O = 0, & (\mathbf{x}, t) \in \Gamma, \\
O|_{t=0} = O_0, & \mathbf{x} \in \Omega; \\
\rho_t = L_\rho(\mathbf{b}, \langle \rho \rangle, \langle O \rangle), & (\mathbf{x}, t) \in Q, \\
\rho = 0, & (\mathbf{x}, t) \in \Gamma, \\
\rho|_{t=0} = \rho_0, & \mathbf{x} \in \Omega.
\end{cases}$$

 ρ : indicator function, for collecting large scale information.

 $\mathbf{a} = \{a_i\}$ and $\mathbf{b} = \{b_i\}$ are control functions.

X	(x, y), spatial variable	t	temporal variable		
Ω	an open region of \mathbb{R}^2	$\partial \Omega$	boundary of Ω		
Q	$\Omega \times (0,T) \qquad \qquad \Gamma \qquad \partial \Omega \times (0,T)$				
$\langle f \rangle$	\rangle all the spatial derivatives of f				

Two Basic Invariances

- Shift Invariance
- Rotation Invariance

Theorem 1: Coefficients $\{a_j\}$ and $\{b_j\}$ must be independent of **x**.

Theorem 2: L_O and L_ρ must be functions of **fundamental differential invariants** that are invariant under shift and rotation.

Fundamental differential invariants can be viewed as "bases" of PDEs.

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993.

Shift/Rotation Invariant Fundamental Differential Invariants

Table 1: Shift and rotationally invariant fundamental differential invariants up to second order.

i	$\operatorname{inv}_i(\rho, O)$
$0,\!1,\!2$	$1, \rho, O$
3,4,5	$ \nabla \rho ^2 = \rho_x^2 + \rho_y^2, \ (\nabla \rho)^t \nabla O = \rho_x O_x + \rho_y O_y, \ \nabla O ^2 = O_x^2 + O_y^2$
6,7	$ \operatorname{tr}(\mathbf{H}_{\rho}) = \rho_{xx} + \rho_{yy}, \operatorname{tr}(\mathbf{H}_{O}) = O_{xx} + O_{yy}$
8	$\left (\nabla \rho)^t \mathbf{H}_{\rho} \nabla \rho = \rho_x^2 \rho_{xx}^2 + 2\rho_x \rho_y \rho_{xy}^2 + \rho_y^2 \rho_{yy}^2 \right $
9	$(\nabla\rho)^t \mathbf{H}_O \nabla\rho = \rho_x^2 O_{xx}^2 + 2\rho_x \rho_y O_{xy}^2 + \rho_y^2 O_{yy}^2$
10	$(\nabla \rho)^t \mathbf{H}_{\rho} \nabla O = \rho_x O_x \rho_{xx} + (\rho_y O_x + \rho_x O_y) \rho_{xy} + \rho_y O_y \rho_{yy}$
11	$(\nabla \rho)^t \mathbf{H}_O \nabla O = \rho_x O_x O_{xx} + (\rho_y O_x + \rho_x O_y) O_{xy} + \rho_y O_y O_{yy}$
12	$\int (\nabla O)^t \mathbf{H}_{\rho} \nabla O = O_x^2 \rho_{xx} + 2O_x O_y \rho_{xy} + O_y^2 \rho_{yy}$
13	$\int (\nabla O)^t \mathbf{H}_O \nabla O = O_x^2 O_{xx} + 2O_x O_y O_{xy} + O_y^2 O_{yy}$
14	$tr(\mathbf{H}_{\rho}^{2}) = \rho_{xx}^{2} + 2\rho_{xy}^{2} + \rho_{yy}^{2}$
15	$\operatorname{tr}(\mathbf{H}_{\rho}\mathbf{H}_{O}) = \rho_{xx}O_{xx} + 2\rho_{xy}O_{xy} + \rho_{yy}O_{yy}$
16	$\int tr(\mathbf{H}_{O}^{2}) = O_{xx}^{2} + 2O_{xy}^{2} + O_{yy}^{2}$

P. Olver. Applications of Lie Groups to Differential Equations, Springer-Verlarg. 1993.

Simplest PDEs

$$L_{O}(\mathbf{a}, \langle O \rangle, \langle \rho \rangle) = \sum_{j=0}^{16} a_{j}(t) \operatorname{inv}_{j}(\rho, O),$$
$$L_{\rho}(\mathbf{b}, \langle \rho \rangle, \langle O \rangle) = \sum_{j=0}^{16} b_{j}(t) \operatorname{inv}_{j}(O, \rho).$$

Learning Coefficients by Optimal Control

$$\begin{split} \min J\left(\{O_m\}_{m=1}^M, \{a_j\}_{j=0}^{16}, \{b_j\}_{j=0}^{16}\right) \\ &= \frac{1}{2} \sum_{m=1}^M \int_{\Omega} [O_m(\mathbf{x}, 1) - \tilde{O}_m(\mathbf{x})]^2 \mathrm{d}\Omega + \frac{1}{2} \sum_{j=0}^{16} \lambda_j \int_0^1 a_j^2(t) \mathrm{d}t + \frac{1}{2} \sum_{j=0}^{16} \mu_j \int_0^1 b_j^2(t) \mathrm{d}t \\ & \left\{ \begin{array}{ll} O_t &=& \sum_{j=0}^{16} a_j(t) \mathrm{inv}_j(\rho, O), & (\mathbf{x}, t) \in Q, \\ O &=& 0, & (\mathbf{x}, t) \in \Gamma, \\ O|_{t=0} &=& O_0, & \mathbf{x} \in \Omega; \\ \rho_t &=& \sum_{j=0}^{16} b_j(t) \mathrm{inv}_j(O, \rho), & (\mathbf{x}, t) \in Q, \\ \rho &=& 0, & (\mathbf{x}, t) \in \Gamma, \\ \rho|_{t=0} &=& \rho_0, & \mathbf{x} \in \Omega. \end{split} \right. \end{split}$$

 (I_m, O_m) are training samples, where I_m is the input image and O_m is the expected output image, $m = 1, 2, \dots, M$.

Solving Optimal Control Governed by PDEs

• Gradient descent

-Gateaux derivative

$$a_j \leftarrow a_j - d \left| \frac{\mathrm{D}J}{\mathrm{D}a_j} \right|^{\mathbb{Z}} j = 1, \cdots, M.$$

 $b_j \leftarrow b_j - d \left| \frac{\mathrm{D}J}{\mathrm{D}b_j} \right|,$

 $\frac{\mathrm{D}J}{\mathrm{D}a_{i}} = \lambda_{i}a_{i} - \int_{\Omega} \sum_{m=1}^{M} \varphi_{m} \operatorname{Inv}_{i}(\rho_{m}, O_{m}) \mathrm{d}\Omega, \\
\frac{\mathrm{D}J}{\mathrm{D}b_{i}} = \mu_{i}b_{i} - \int_{\Omega} \sum_{m=1}^{M} \phi_{m} \operatorname{Inv}_{i}(O_{m}, \rho_{m}) \mathrm{d}\Omega.$

Adjoint Equations

The adjoint equation for φ_k is

$$\begin{cases} \frac{\partial \varphi_m}{\partial t} + \sum_{p \in \wp} (-1)^{|p|} \left(\sigma_{O;p} \varphi_m + \sigma_{\rho;p} \phi_m \right)_p = 0, & (\mathbf{x}, t) \in Q, \\ \varphi_m = 0, & (\mathbf{x}, t) \in \Gamma, \\ \varphi_m|_{t=1} = \tilde{O}_m - O_m(1), & \mathbf{x} \in \Omega. \end{cases}$$

The adjoint equation for ϕ_k is
$$\begin{cases} \frac{\partial \phi_m}{\partial t} + \sum_{p \in \wp} (-1)^{|p|} \left(\tilde{\sigma}_{O;p} \varphi_m + \tilde{\sigma}_{\rho;p} \phi_m \right)_p = 0, & (\mathbf{x}, t) \in Q, \\ \phi_m = 0, & (\mathbf{x}, t) \in \Gamma, \\ \phi_m|_{t=1} = 0, & \mathbf{x} \in \Omega, \end{cases}$$

where

 \approx BP in NN

$$\tilde{\sigma}_{O;p} = \frac{\partial L_O}{\partial \rho_p} = \sum_{i=0}^{16} a_i \frac{\partial \operatorname{inv}_i(\rho, O)}{\partial \rho_p}, \quad \text{and} \quad \tilde{\sigma}_{\rho;p} = \frac{\partial L_\rho}{\partial \rho_p} = \sum_{i=0}^{16} b_i \frac{\partial \operatorname{inv}_i(O, \rho)}{\partial \rho_p}.$$

Layer-wise Optimization

• Minimize the difference from the ground truth at every time step.

Zhao et al., *A Fast Alternating Time-Splitting Approach for Learning Partial Differential Equations*, Neurocomputing 2016.

So Complex ...

- The above is **our** effort to set up the framework
- A user only have to prepare input/output training pair
- Once coefficients are computed, PDEs are obtained

Experiments

• The same form of PDEs for different problems!

Image Blur

RMSE=0.46, PSNR=54.88dB

Figure 2: The learnt coefficients (a) a_i and (b) b_i , $i = 0, \dots, 16$, for image blurring. Standard heat equation: $a_7 = \text{const} > 0$, $a_i \equiv 0$, $i \neq 7$, and $b_j \equiv 0$, $j = 0, \dots, 16$.

Perceptual Edge Detection

Liu, <u>Lin</u>, Zhang, Tang, and Su, *Toward Designing Intelligent PDEs for Computer Vision: A Data-Based Optimal Control Approach*, Image and Vision Computing, 2013.

Image Denoising – Gaussian Noise

OUR: 27.87 ± 2.07 dB; Other PDE: 26.91 ± 2.68 dB

G. Gilboa, N. Sochen, and Y.Y. Zeevi. Image enhancement and denoising by complex diffusion processes. *IEEE TPAMI*, 26(8):1020–1036, 2004.

Image Denoising – Real Noise

29.22dB

28.35dB

27.98dB

Noiseless

28.67dB

29.52dB $TV-l_1$

32.29dB LPDE

Plane Detection

Plane Detection

Plane Detection

Butterfly Detection

Butterfly Detection

Butterfly Detection

Handling Color Images

- Correlation among colors is tricky!
- Multi-channels + one indicator function
- 69 fundamental differential invariants

Experiments - Color2Gray

Experiments - Demosaicking

Full image Zoomed region

n BI

SA [18]

DFAPD [20] BI + 13 layers

(a) Input image

(b) Output image

(c) n = 1

(d) n = 3

ICDAR

SVT

Table 2: Comparison with most recent text detection results on the ICDAR 2005 test database. The results of other methods are quoted from [12, 26].

Methods	Description	Precision	Recall	F-measure
Our method	Hybrid	0.87	0.67	0.76
Pan et al. [12]	Hybrid	0.67	0.70	0.69
Huang et al. [26]	CC (SWT)	0.81	0.74	0.72
Yao et al. [25]	CC (SWT)	0.69	0.66	0.67
Epshtein et al. [5]	CC (SWT)	0.73	0.60	0.66
Chen et al. [47]	CC (MSER)	0.73	0.60	0.66
Neumann and Matas [49]	CC (MSER)	0.65	0.64	0.63
Wang et al. [50]	CC	0.77	0.61	0.68
Yi and Tian [51]	CC	0.71	0.62	0.63
Zhang and Kasturi [52]	CC	0.73	0.62	-
Yi and Tian [21]	$\mathbf{C}\mathbf{C}$	0.71	0.62	0.62
Lee et al. [40]	Sliding window	0.66	0.75	0.70

Table 3: Comparison with most recent text detection results on the ICDAR 2011 test database. These results are from the papers [24, 48].

Methods	Description	Precision	Recall	F-measure
Our method	\mathbf{Hybrid}	0.88	0.69	0.78
Yin et al. [24]	CC (MSER)	0.86	0.68	0.76
Neumann and Matas [48]	CC (MSER)	0.85	0.68	0.75
Ye et al. $[4]$	CC (MSER)	0.89	0.62	0.73
Neumann and Matas [23]	CC (MSER)	0.79	0.66	0.72
Shi et al. [53]	CC (MSER)	0.83	0.63	0.72
Koo et al. [54]	CC (MSER)	0.83	0.63	0.71
Huang et al. [26]	CC (SWT)	0.82	0.75	0.73
Yi and Tian [51]	CC	0.81	0.72	0.71
Wang et al. $[50]$	CC	0.71	0.57	0.63

Table 4: Comparison with most recent text detection results on the SVT 2010 database. The results of other methods are quoted from respective papers.

Methods	Description	Precision	Recall	F-measure
Our method,	Hybrid	0.72	0.41	0.52
trained on the ICDAR 2011 database				
Yin et al. [24],				
trained on the SVT 2011 database	CC (MSER)	0.66	0.41	0.51
trained on the ICDAR 2011 database		0.62	0.32	0.42
Phan et al. [55]	CC	0.50	0.51	0.51
Epshtein et al. [5]	CC (SWT)	0.54	0.42	0.47

Table 5: Comparison with most recent text detection results on the SVT 2011 database. The results of other methods are quoted from respective papers.

Methods	Description	Precision	Recall	F-measure
Our method, trained on	Hybrid	0.65	0.39	0.49
the ICDAR 2011 database				
Wang et al. [6]	CC	0.67	0.29	0.41
Neumann et al. [38]	CC (MSER)	0.19	0.33	-

Grand Picture

• What are the PDEs that govern visual processing?

There should be!

Grand Picture

• How to find the PDEs?

Symmetries or Invariances

- Newton Laws: Galilean Transformation
- Maxwell Equations: Lorentzian Transformation
- Special Relativity: FitzGerald–Lorentz–Einstein Transformation
- General Relativity: Gauge Invariance
- String Theory: Super-Symmetry
- Higgs Particle: Local Gauge Invariance of Young-Mills Equation

Grand Picture

• Learning based PDEs only requires that its output is close to that of real visual system when the input is a meaningful image.

For example, although

$$O_1(\mathbf{x},t) = \|\mathbf{x}\|^2 \sin t \text{ and } O_2(\mathbf{x},t) = (\|\mathbf{x}\|^2 + (1-t)\|\mathbf{x}\|)(\sin t + t(1-t)\|\mathbf{x}\|^3)$$

are very different functions, they initiate from the same function at t = 0 and also settle down at the same function at time t = 1. So both functions fit our needs and we need not care whether the system obeys either function.

Conclusions and Future Work

- LPDEs is a promising framework to solve different computer vision and image processing problems in a unified way.
- More invariants and more complex combinations are yet to be explored.
- Biological explanation of the LPDEs is also interesting.
- Connections to deep learning?

Thanks!

- <u>zlin@pku.edu.cn</u>
- <u>http://www.cis.pku.edu.cn/faculty/vision/zlin/zlin.htm</u>

